NOTE

Role of Dehydrogenation Activity in the Catalytic Isomerization and Dehydrocyclization of Hydrocarbons

Dual function catalysts, consisting of a dehydrogenation component supported on an acidic oxide, are commonly used for the isomerization and dehydrocyclization of hydrocarbons (1) . A correlation between isomerization activity and dehydrogenation activity of such catalysts has been reported by Ciapetta and co-workers (1). In these studies the effect of dehydrogenation activity was determined by varying the nature of the dehydrogenation component, i.e., chromia vs. molybdena vs. platinum, all supported on silica-alumina. These studies showed that isomerization activity increased with increasing dehydrogenation activity and suggested a critical dehydrogenation activity beyond which further increase would have little effect. A relation between dehydrocyclization and dehydrogenation activity was also indicated. In the present study, the effects of dehydrogenation activity on the isomerization and dehydrocyclization activity of a single catalyst system, platinum-alumina, have been determined by varying platinum content and noting the effect on the rates of conversion of n-heptane and methylcyclopentane.

EXPERIMENTAL

The n-heptane and methylcyclopentane were contacted with catalyst in the presence of hydrogen, using a flow reactor technique described previously (2). Catalyst charges of 3.0 to 6.Og were used. The reaction products were analyzed by a chromatographic procedure described elsewhere (3). The hydrocarbons used in this work were Phillips pure grade $(>99 \text{ mole } \%$ purity). The hydrocarbons and hydrogen were dried to less than 5 ppm water using procedures described previously (2). The platinum on alumina catalysts used in this study contained 0.10, 0.30, and 0.60% platinum. The alumina was prepared from a sample of beta alumina trihydrate (4) supplied by Davison Chemical Co. x-Ray diffraction measurements confirmed that it was beta alumina trihydrate. The trihydrate was calcined in air for 4 hr at 593°C to activate the alumina. The surface area of the resulting alumina was 200 m²/g. The activated alumina was impregnated with aqueous chloroplatinic acid, which was followed by a second 4 hr calcination in air at 593°C. The finished catalysts were stripped with a mixture of water vapor and nitrogen to remove the chlorine. The catalysts used in the n-heptane runs were stripped for 18 hr at 538"C, and were then air-dried for 5 hr at 538°C. This treatment decreased the chlorine to about 0.02 wt $\%$ and decreased the alumina surface area from 200 to 130 m^2/g . The catalysts used in the methylcyclopentane runs were stripped for 30 hr at 372"C, and were airdried for 5 hr at 510°C. This treatment also decreased chlorine to about 0.02 wt $%$ but resulted in a final alumina surface area of 190 m^2/g . The catalysts were pretreated with hydrogen for 3 hr at 527°C prior to introducing hydrocarbon reactant.

RESULTS

Typical product distribution data for nheptane and methylcyclopentane at low conversions $(5-10\%)$ over a platinum on alumina catalyst are shown in Table 1. The observed reactions of n-heptane include isomerization, dehydrocyclization, and hydrocracking. The isomerization reaction leads predominantly to the formation of 2- and 3-methylhexanes, with little formation of dimethylpentanes. The main prod-

TABLE 1 TYPICAL PRODUCT DISTRIBUTION DATA[®]

$\rm{Reactant}$ F/Wb	0.45	<i>n</i> -Heptane Methylcyclopentane 1.28	
Mole $\%$ conversion to:			
C_{F} -	1.3		
2-Methylpentane		0.6	
3-Methylpentane		0.4	
Dimethylbutanes		0.2	
n-Hexane	0.1	2.0	
2-Methylhexane	2.6		
3-Methylhexane	5.0		
Dimethylpentanes	0.2		
Cyclohexane		0.1	
Methylcyclohexane	0.1		
Dimethylcyclopentanes	0.1		
Benzene		1.4	
Toluene	0.4		
Mole $\%$ unconverted	90.2	95.3	

^a 471°C, 21 atm, H₂/hydrocarbon = 5, 0.3 $\%$ Pt catalyst.

) Gram moles of hydrocarbon charged per hour per gram of catalyst.

uct of dehydrocyclization is toluene, with some formation of C_7 cycloparaffins. Methylcyclopentane undergoes isomerization-dehydroisomerization to form cyclohexane and benzene, the latter in larger where F represents the feed rate of hydrocarbon reactant in gram moles per hour, W is the weight of catalyst in grams, and Δx is the fraction of hydrocarbon converted in a particular reaction. Since the data were obtained at low conversion levels $(<10\%$ at 471°C, about 20% at 527°C), the rates obtained in this way represent initial rates. Rates were found to be reproducible within about 10% . The rates are listed as zero for zero per cent platinum, since no isomerization, dehydroisomerization, or dehydrocyclization were observed over a sample of alumina alone. The rate of isomerization of n-heptane is essentially constant over the range from 0.10 to 0.60% platinum. The rate of dehydrocyclization, however, increases by 75 to 100%. When platinum content is increased from 0.30 to O.SO%, the rate of isomerization-dehydroisomerization of methylcyclopentane increases by about 10%. This latter difference could be within experimental error.

Unpublished data obtained in this Laboratory indicate that the dehydrogenation activity of a platinum-alumina catalyst (as measured by the rate of conversion of

TABLE 2 EFFECT OF PT CONTENT ON REACTIVITIES OF n -HEPTANE (nC_7) and

METHYLCYCLOPENTANE (MCP) OVER PT-AL2O3					
Pt content, wt %	0	0.10	0.30	0.60	
Reaction rates ^a					
Isomerization of nC_7					
471° C	Ω	0.035	0.035	0.038	
527° C	0	0.12	0.13	0.12	
Dehydrocyclization of nC_7					
471° C	θ	0.0022	0.0027	0.0045	
527° C	0	0.020	0.025	0.035	
Isomerization-Dehydroisomerization of MCP					
471° C	0		0.019	0.021	
499° C	0		0.039	0.043	

^a Gram moles per hour per gram of catalyst at 21 atm and $H_2/hydrocarbon = 5$.

work. A ring splitting reaction is also ob- tional to platinum content over the range served, leading to the formation of hexancs. from 0.1 to 0.6% platinum.

Rate data are shown in Table 2 as a Considerable evidence is available supfunction of catalyst platinum content. The rates were calculated using the relation

$$
r = (F/W)\Delta x \tag{1}
$$

amounts at the conditions used in this methylcyclohexane to toluene) is propor-

porting a mechanism in which isomerization of saturated hydrocarbons proceeds via gas phase olefin intermediates formed on platinum sites of the catalyst $(2,5,6)$. The independence of isomeriaation rate on platinum content (dehydrogenation ac- 3* tivity) above a certain level indicates that the formation of olefin intermediate is not a limiting factor in the reaction at the conditions of this work. However, a similar type of interpretation does not appear to be adequate for dehydrocyclization, since the rate increases with platinum content throughout.

REFERENCES

1. CIAPETTA, F. G., DOBRES, R. M., AND BAKER, Esso Research and Engineering Company R. W., in "Catalysis" (P. H. Emmett, ed.), *Linden, New Jersey* Vol. 6, p. 586. ReinhoId, New York, 1958. *Received June* 4, *i96.\$*

- 2. SINFELT, J. H., HURWITZ, H., AND ROHRER, J. C., J. *Phys. Chem. 64, 892* (1960).
- 3. SINFELT, J. H., AND ROHRER, J. C., J. Phys. *Chem.* 65, 978 (1961).
- **STUMPF,** H. C., RUSSELL, A. S., NEWSOME, J. W., **AND** TUCKER, C. M., Xnd. Eng. *Chem.* 42, 1398 (1950).
- 1 **MILLS,** *G.* A,, HEINEMANN, H., MILLIEEN, T. H., AND **OBLAD,** A. G., Ind. Eng. *Chem.* 45, 134 (1953).
- **WEISZ, P, B.,** AND SWEGLER, E. W., Science 126, 31 (1957).

J. H. SINFELT

H. HURWITZ

J, C. ROHRER