
JOURNAL OF CATALYSIS 1, 481-483 (1962) 

NOTE 

Role of Dehydrogenation Activity in the ‘Catalytic lsomerization 

and Dehydrocyclization of Hydrocarbons 

Dual function catalysts, consisting of a 
dehydrogenation component supported on 
an acidic oxide, are commonly used for the 
isomerization and dehydrocyclization of 
hydrocarbons (1) . A correlation between 
isomerization activity and dehydrogenation 
activity of such catalysts has been reported 
by Ciapetta and co-workers (1). In these 
studies the effect of dehydrogenation ac- 
tivity was determined by varying the na- 
ture of the dehydrogenation component, 
i.e., chromia vs. molybdena vs. platinum, 
all supported on silica-alumina. These 
studies showed that isomerization activity 
increased with increasing dehydrogenation 
activity and suggested a critical dehydro- 
genation activity beyond which further in- 
crease would have little effect. A relation 
between dehydrocyclization and dehydro- 
genation activity was also indicated. In 
the present study, the effects of dehydro- 
genation activity on the isomerization and 
dehydrocyclization activity of a single 
catalyst system, platinum-alumina, have 
been determined by varying platinum con- 
tent and noting the effect on the rates of 
conversion of n-heptane and methylcyclo- 
pentane. 

EXPERIMENTAL 

The n-heptane and methylcyclopentane 
were contacted with catalyst in the pres- 
ence of hydrogen, using a flow reactor tech- 
nique described previously (2). Catalyst 
charges of 3.0 to 6.Og were used. The reac- 
tion products were analyzed by a chroma- 
tographic procedure described elsewhere 
(3). The hydrocarbons used in this work 
were Phillips pure grade (>99 mole $% 
purity). The hydrocarbons and hydrogen 
were dried to less than 5 ppm water using 
procedures described previously (2). The 

platinum on alumina catalysts used in this 
study contained 0.10, 0.30, and 0.60% 
platinum. The alumina was prepared from 
a sample of beta alumina trihydrate (4) 
supplied by Davison Chemical Co. x-Ray 
diffraction measurements confirmed that it 
was beta alumina trihydrate. The trihydrate 
was calcined in air for 4 hr at 593°C to 
activate the alumina. The surface area of 
the resulting alumina was 200 m’/g. The 
activated alumina was impregnated with 
aqueous chloroplatinic acid, which was fol- 
lowed by a second 4 hr calcination in air 
at 593°C. The finished catalysts were 
stripped with a mixture of water vapor 
and nitrogen to remove the chlorine. The 
catalysts used in the n-heptane runs were 
stripped for 18 hr at 538”C, and were then 
air-dried for 5 hr at 538°C. This treatment 
decreased the chlorine to about 0.02 wt % 
and decreased the alumina surface area 
from 200 to 130 m”/g. The catalysts used 
in the methylcyclopentane runs were 
stripped for 30 hr at 372”C, and were air- 
dried for 5 hr at 510°C. This treatment also 
decreased chlorine to about 0.02 wt $% but 
resulted in a final alumina surface area 
of 190 m”/g. The catalysts were pretreated 
with hydrogen for 3 hr at 527°C prior to 
introducing hydrocarbon reactant. 

RESULTS 

Typical product distribution data for n- 
heptane and methylcyclopentane at low 
conversions (510%) over a platinum on 
alumina catalyst are shown in Table 1. The 
observed reactions of n-heptane include 
isomerization, dehydrocyclization, and hy- 
drocracking. The isomerization reaction 
leads predominantly to the formation of 
2- and 3-methylhexanes, with little forma- 
tion of dimethylpentanes. The main prod- 
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TABLE 1 
TYPICAL PRODUCT DISTRIBUTION DATA~ 

Reactant n-Heptane Methylcyclopentane 
F/Wb 0.45 1.28 

Mole y0 conversion to: 

G- 1.3 

2-Methylpentane - 0.6 
3-Methylpentane - 0.4 

Dimet.hylbutanes - 0.2 

n-Hexane 0.1 2.0 
2-Methylhexane 2.6 - 

3-Methylhexane 5.0 - 

Dimethylpentanes 0.2 - 

Cyclohexane - 0.1 
Methylcyclohexane 0.1 - 

Dimethylcyclopentanes 0.1 - 

Benzene - 1.4 
Toluene 0.4 - 

Mole y0 unconverted 90.2 95.3 

a 471”C, 21 atm, Hz/hydrocarbon = 5, 0.3% Pt 

catalyst. 
) Gram moles of hydrocarbon charged per hour 

per gram of catalyst. 

uct of dehydrocyclization is toluene, with 
some formation of C, cycloparaffins. 
Methylcyclopentane undergoes isomeriza- 
tion-dehydroisomerization to form cyclo- 
hexane and benzene, the latter in larger 

where F represents the feed rate of hydro- 
carbon reactant in gram moles per hour, 
W is the weight of catalyst in grams, and 
Ax is the fraction of hydrocarbon converted 
in a particular reaction. Since the data 
were obtained at low conversion levels 
(<lo% at 471”C, about 20% at 527’C), 
the rates obtained in this way represent 
initial rates. Rates were found to be re- 
producible within about lO’j%. The rates 
are listed as zero for zero per cent plat- 
inum, since no isomerization, dehydroiso- 
merization, or dehydrocyclization were 
observed over a sample of alumina alone. 
The rate of isomerization of n-heptane is 
essentially constant over the range from 
0.10 to 0.60% platinum. The rate of de- 
hydrocyclization, however, increases by 75 
to 100%. When platinum content is in- 
creased from 0.30 to O.SO%, the rate 
of isomerization-dehydroisomerization of 
methylcyclopentane increases by about 
10%. This latter difference could be within 
experimental error. 

Unpublished data obtained in this Lab- 
oratory indicate that the dehydrogenation 
activity of a platinum-alumina catalyst 
(as measured by the rate of conversion of 

TABLE 2 

EFFECT OF PT CONTENT ON REACTIVITIES OF 7~-HEPTANE (nG) AND 

METHYLCYCLOPENTANE (MCP) OVER PT-A~203 

Pt content, wt y. 0 0.10 0.30 0.60 

Reaction ratesa 

Isomerization of nC7 
471°C 0 0.035 0.035 0.038 

527°C 0 0.12 0.13 0.12 

Dehydrocyclization of nC7 

471°C 0 0.0022 0.0027 0.0045 

527°C 0 0.020 0.025 0.035 

Isomerization-Dehydroisomerization of MCP 
471°C 0 - 0.019 0.021 

499°C 0 - 0.039 0.043 

a Gram moles per hour per gram of catalyst at 21 atm and HJhydrocarbon = 5. 

amounts at the conditions used in this methylcyclohexane to toluene) is propor- 
work. A ring splitting reaction is also ob- tional to platinum content over the range 
served, leading to the formation of hexancs. from 0.1 to 0.6% platinum. 

Rate data are shown in Table 2 as a Considerable evidence is available sup- 
function of catalyst platinum content. The 
rates were calculated using the relation 

porting a mechanism in which isomeriza- 
tion of saturated hydrocarbons proceeds 

T = (F/W)Ax (1) via gas phase olefin intermediates formed 
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on platinum sites of the catalyst (2,6,6). 2. 
The independence of isomeriaation rate on 
platinum content (dehydrogenation ac- 3* 
tivity) above a certain level indicates that 
the formation of olefin intermediate is not ” 
a limiting factor in the reaction at the 
conditions of this work. However, a similar 6% 
type of interpretation does not appear to 
be adequate for dehydrocyclization, since 
the rate increases with platinum content 6. 
throughout. 
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